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Abstract Species experience both internal feedbackswith endogenous factors such as
trait evolution and external feedbacks with exogenous factors such as weather. These
feedbacks can play an important role in determining whether populations persist or
communities of species coexist. To provide a general mathematical framework for
studying these effects, we develop a theorem for coexistence for ecological models
accounting for internal and external feedbacks. Specifically, we use average Lyapunov
functions and Morse decompositions to develop sufficient and necessary conditions
for robust permanence, a form of coexistence robust to large perturbations of the
population densities and small structural perturbations of the models. We illustrate
how our results can be applied to verify permanence in non-autonomous models,
structured population models, including those with frequency-dependent feedbacks,
and models of eco-evolutionary dynamics. In these applications, we discuss how our
results relate to previous results for models with particular types of feedbacks.
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1 Introduction

Understanding when and how species coexist is a fundamental problem in ecology.
Permanence theory is a mathematical formalism developed to address this problem
for ecological models. Permanence is a particular form of persistence that ensures
populations will persist in the face of rare but large perturbations as well as small and
frequent perturbations (Schreiber 2006) and hence, is an appropriate notion of coexis-
tence for ecological systems which often experience vigorous shake-ups, rather than
gentle stirrings (Jansen and Sigmund 1998). Theory for showing permanence incor-
porates a variety of standard approaches for characterizing and analyzing dynamical
systems including topological approaches, average Lyapunov functions, and measure
theoretic approaches. For a review and history on this theory and these approaches
see (Hutson and Schmitt 1992; Schreiber 2006; Smith and Thieme 2011). Here, we
develop sufficient and necessary conditions for permanence for ecological equations
with feedbacks to internal or external variables.

Biologically, many internal and external variables may provide feedbacks on the
ecological dynamics of species. By internal variables, we mean factors intrinsic to
the populations. For example, this is appropriate for species structured by genotypes
of an ecologically-important trait, in which selection affects the frequency of each
genotype, or for traits that may change due to phenotypic plasticity. In either case,
internal trait changes alter population growth and drive changes in population densi-
ties, generating a potential feedback to the trait dynamics. Furthermore, individuals
within a population may also be classified into different types (e.g. age or size classes,
sex, spatial location) and this may influence their growth as well as the growth of the
populations they interact with. In particular, this population structure is important for
species with life stages, between which individuals can transition, or species living
in patchy landscapes, between which individuals can disperse. By external variables,
we mean dynamic variables extrinsic to the populations that influence survivorship,
growth rates and reproductive rates. For example, environmental variables such as pre-
cipitation or temperature which vary in time or the constructed habitats of ecosystem
engineering species often influence these demographic rates. These internal and exter-
nal variables may influence coexistence and motivate us to characterize permanence
in models that account for general feedbacks with these variables.

Permanence has been studied for general dynamical systems, abstracting beyond
classical ecological models (Hutson 1984b; Butler and Waltman 1986; Hutson 1988;
Garay 1989; Hale and Waltman 1989). For example, Garay (1989) characterized per-
manence using Morse decompositions and Hutson (1984b, 1988), by extending work
of Hofbauer (1981), found a characterization using so-called average Lyapunov func-
tions. Combining these approaches, Garay and Hofbauer (2003) provided sufficient
conditions for robust permanence for ecological equations in the standard form

dxi
dt

= xi fi (x) i = 1 . . . n (1)

where xi is population densities and fi is the per-capita growth rate of population i .
Robust permanence ensures that permanence holds following small perturbations of
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the per-capita growth rate equations (Schreiber 2006). Garay and Hofbauer (2003)
and Schreiber (2000) showed that robust permanence can be characterized in terms
of the average per-capita growth rates of missing species for trajectories of (1) on the
extinction set. These ecological equations, however, assume that the per-capita growth
rates only depend on the densities of the species, ignoring internal differences amongst
individuals in the populations and external influences.

That internal and external variation exists is indisputable; no two individuals in
a population are identical and environmental conditions always vary in time. From
a modeling perspective, the ubiquity of both varying internal and external vari-
ables requires careful choice on when and how to include these variables. In some
familiar cases, feedbacks are implicitly modeled, such as in some models of interspe-
cific competition with species competing for a limited resource (Schoener 1976) or
predator-prey models with prey switching behavior (Hutson 1984a; van Baalen et al.
2001). In other cases, feedback variables are explicitly modeled and this allows them
to have their own dynamics. Hence, an important scientific goal is to determine when
and how these feedbacks impact populations and communities. Some studies have
examined permanence in models with specific types of internal or external feedbacks,
such as for internally structured populations (Hofbauer and Schreiber 2010) or envi-
ronmental variation (Gatica and So 1988; Schreiber et al. 2011a; Roth et al. 2017).
However, there is no general framework for dealing explicitly with both internal and
external variables.

In the present paper, we derive sufficient conditions for robust permanence in a
general model of interacting populations with internal and external feedbacks and
demonstrate how it generalizes and extends prior results of models accounting for
these feedbacks. Our main permanence results build on average Lyapunov functions
developed by Garay and Hofbauer (2003). In Sect. 2, we introduce the general model
and describe ourmain assumptions. Then, we state our sufficient and necessary criteria
for permanence and robust permanence in Sects. 3 and 4, respectively. In Sect. 5, we
apply our main theorem to three distinct models with feedbacks from the environment,
population structure, and trait evolution to demonstrate its broad applicability and the
importance of internal and external feedbacks on species coexistence.

2 Model and terminology

We extend model (1) to incorporate internal and external feedbacks. We suppose that
n populations are interacting in a community and that population i has density xi , with
i = 1 . . . n. Interactions can include competition, predation as well as mutualisms. For
each population i , the per-capita growth rate, fi , depends on the densities of all the
species it interacts with, as well as on another set of m variables. These m variables
can represent a combination of internal factors, such as the stages in a life cycle
of a population, and external factors, such as temperature or another environmental
variable. Each of these factors is represented quantitatively by y = (y1, . . . , ym) ∈
K ⊂ R

m , and can also change due to feedbacks with the population densities as well
as allm factors. Altogether, the dynamics in this fairly general ecological scenario can
be expressed with the differential equation model
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dxi
dt

= xi fi (x, y) i = 1 . . . n

dy j
dt

= g j (x, y) j = 1 . . .m
(2)

where x = (x1, . . . , xn) ∈ R
n+ = [0,∞)n is the vector of population densities. Note

that both f and g can depend on both x and y, capturing the potential feedback
between the population densities and the other dynamic variables. The model form is
quite general and can apply to a variety of types of feedbacks as illustrated in Sect. 5,
where we apply our theorem to different biological scenarios.

Let S = R
n+ × K be the state space for (2). We let z.t denote the solution to

(2) for initial condition z = (x, y) ∈ S. For any set Z ⊆ S and I ⊆ R+, let
Z .I = {z.t |t ∈ I, z ∈ Z}.

We make the following standing assumptions:

S1: xi fi and g j are locally Lipschitz functions, and
S2: there exists a compact set Q ⊆ S such that Q.[0,∞) ⊆ Q and z.t ∈ Q for t

sufficiently large for all z ∈ S.

As we demonstrate in Sect. 5, both assumptions hold for many biological models.
The first assumption ensures that solutions to (2) locally exist and are unique. The
second assumption corresponds to the biological reality that population densities do
not grow without bound.

The extinction set S0 := {z = (x, y) ∈ S|∏n
i=1 xi = 0} is the set which has at

least one species extinct, i.e., with density equal to zero. Observe from model (2) that
for any initial condition in z ∈ S0, z.t stays in S0 for all time, capturing the “no cats,
no kittens” principle of closed ecological systems.

To use our model to identify the conditions that ensure community coexistence,
we must formulate a precise notion of coexistence. The importance of understanding
coexistence in ecology has inspired many different notions of coexistence (Schreiber
2006). Here, we use the notion of permanence, which ensures that there is a positive
population density that each species eventually stays above provided all populations
are initially present. Precisely, model (2) is permanent if there is a β > 0 such that
for all z ∈ S\S0

lim inf
t→∞ xi (t) ≥ β for i = 1, 2, . . . , n (3)

for all i , where xi (t) is the i th component of z.t = (x, y).t .
Permanence implies that if all the species are initially coexisting, then they will

continue to coexist, despite rare but large perturbations or frequent small perturbations
(Schreiber 2006). In the next section, we present the main theorems, which establishes
sufficient and necessary conditions for permanence for models of the form (2).

Before stating ourmain theorem,we introduce some terminology. Theω-limit set of
a set Z ⊂ S is ω(Z) := ∩t≥0Z .[t,∞) and the α-limit set is α(Z) := ∩t≤0Z .(−∞, t].
A set Z ⊂ S is invariant if Z .R = Z . A compact invariant set Z is isolated if there
exists a closed neighborhoodU such that for all z ∈ U\Z there is a t such that z.t /∈ U .
For any compact invariant set Z , a subset A ⊂ Z is called an attractor in Z if there
is a neighborhood U of A such that ω(U ∩ Z) = A. The dual repeller to an attractor
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A in Z is R(A) = {z ∈ Z |ω(z) ∩ A = ∅} and A, R(A) are called attractor-repeller
pairs. The global attractor is ω(Q).

3 Permanence theorem

We take advantage of a characterization of permanence involving Morse decomposi-
tions. Roughly, a Morse decomposition for a compact invariant set is a finite number
of disjoint invariant subsets, called Morse sets, ordered in such a way that the flow
tends to move from sets of higher order to lower order. More precisely,

Definition 1 A collection of sets M = {M1, M2, ..., M�} is a Morse decomposition
for a compact invariant setΓ ifM1, M2, ..., M� are pairwise disjoint, isolated invariant
compact sets, called Morse sets, such that for every z ∈ Γ \∪�

k=1 Mk there are integers
i < j such that ω(z) ⊂ Mi and α(z) ⊂ Mj .

For a compact invariant set Γ , Morse decompositions always exist but are not
necessarily unique. Trivially, one Morse decomposition for Γ is {Γ }. However, more
refined Morse decompositions are typically more useful. In our main theorem, we
use Morse decompositions to decompose the global attractor on the extinction set and
define conditions on the Morse sets that give permanence for (2).

Theorem 1 LetM = {M1, M2, . . . M�} be aMorse Decomposition for S0∩Γ where
Γ is the global attractor for (2). If, for each Mk ∈ M, there exists pk1, . . . , pkn > 0
such that for every z ∈ Mk, there is a Tz such that

n∑

i=1

pki

∫ Tz

0
fi (z.t)dt > 0

then (2) is permanent.

In words, if, for each Morse set, the weighted combination (weights are pki ) of
the per-capita growth rates over some time period is positive from every point in the
Morse set, then there is permanence. Moreover, there is an A ⊂ Γ such that S0 ∩ Γ

is R(A).
Given the Morse decomposition for S0 ∩ Γ , we can show the following partial

converse

Corollary 1 For eachMorse set Mk, if there is a pk1, . . . , pkn > 0 such that for every
z ∈ Mk, there is a Tz > 0 such that

∑

i

pki

∫ Tz

0
fi (z.t)dt < 0

then (2) is not permanent and, more strongly, S0 ∩ Γ is an attractor in Γ .
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The proof of this partial converse follows from applying Theorem 1 to the reverse
time flow in Γ to show that S0 ∩ Γ is a repeller in reverse time.

Intuitively, for permanence to hold, population densities near extinction have to
increase. Lyapunov functions are functions that increase along solutions on some
subset of the state space, and are used to characterize local and global stability of
invariant sets, including equilibria. Extending beyond equilibria, “average Lyapunov
functions”, introduced by Hofbauer (1981), are functions that increase on average
along solutions. These can apply to more complex invariant sets, which are common
in many population models of the form (1).

In Appendix 1, we prove Theorem 1. In particular, we define “good” average Lya-
punov functions (GALFs), as introduced by Garay and Hofbauer (2003), and then
prove that the existence of a GALF on each Morse set gives permanence. Then, we
show that the condition in Theorem 1 on the weighted per-capita growth functions
implies the existence of a GALF in the standard form

P(x, y) =
n∏

i=1

x pi
i (4)

for some vector p with pi > 0. The standard form (4) is zero everywhere on the
extinction set, positive everywhere not on the extinction set and has time derivative

Ṗ = P
n∑

i=1

pi fi

This time derivative gives a convenient relationship between the function and the
per-capita growth rates, fi , of each of the species. Feedbacks with the internal or
external variable y will affect the per-capita growth rates, thereby influencing the
existence and construction of Lyapunov functions.

4 Robust permanence

Populationmodels are always approximations of reality. In thewords ofConley (1978),
“if such rough equations are to be of use, it is necessary to study them in rough terms”.
In line with this, Hutson and Schmitt (1992) introduced robust permanence, i.e. that
permanence holds even with sufficiently small perturbations to the growth functions
fi and Schreiber (2000) subsequently provided conditions for robust permanence for
(1) using a measure theoretic approach. More recently, Garay and Hofbauer (2003)
showed robust permanence for (1) using GALFs. We use this method to extend our
permanence result to robust permanence, with respect to perturbations in both the
growth functions and the feedback dynamics.
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Suppose we have a perturbed system

dxi
dt

= xi f̃i (x, y)

dy j
dt

= g̃ j (x, y)
(5)

Let z̃.t denote the solution of (5) with initial condition z ∈ S and analogously, for
set Z ⊆ S and I ⊆ R+, Z̃ .I = {z̃.t |t ∈ I, z ∈ Z}. Also, let ω̃(Z), α̃(Z) denote the
ω, α-limit set for (5), respectively. Let Q be as defined previously. We define ( f̃ , g̃)
to be a (δ, Q)-perturbation of (2) if

R1: | f̃i (x, y) − fi (x, y)| < δ and |g̃ j (x, y) − g j (x, y)| < δ for all i, j and for all
(x, y) ∈ Q

R2: xi f̃i and g̃ j are all locally Lipschitz continuous, and

R3: Q̃.R+ ⊆ Q and for all z ∈ S, z̃.t ∈ Q for t sufficiently large.

Denote the set of all (δ, Q)-perturbations as Δ(δ, Q). This set contains differential
equation models that are close to the unperturbed model (2), which have solutions that
eventually enter the compact set Q.

Definition 2 (2) is robustly permanent if there is a δ > 0 and β > 0 such that for all
( f̃ , g̃) ∈ Δ(δ, Q), (3) holds for all z ∈ S\S0.
Theorem 2 The conditions in Theorem 1 imply robust permanence.

To show this, we apply a result from Hirsch et al. (2001) to show permanence of
( f̃ , g̃) ∈ Δ(δ, Q) with a uniform lower bound β. A proof is given in Appendix 2.
It is worth noting that permanence does not in general imply robust permanence;
ẋ = x2(1−x) is permanent but not robustly permanent.Hofbauer andSchreiber (2004)
show that robust permanence is not generic among permanent ecological equations.

5 Applications

Themain results developed here are applicable to a broad range of internal and external
feedbacks. In this section, we discuss permanence in models with external environ-
mental, internal structural and evolutionary feedbacks, which illustrate the utility of
the main theorem. In the first example, we apply our result to show how external
environmental fluctuations can enable coexistence amongst competing species in the
form of robust permanence. In the second example, we demonstrate how existing
permanence conditions from Hofbauer and Schreiber (2010) for models with internal
population structure, i.e., the partitioning of a whole population into distinct types, can
be reproduced using our framework. Then we give an example of a sexually-structured
population model to which the existing result from Hofbauer and Schreiber (2010)
does not apply, emphasizing the utility of our result to structured models. Finally, in
the third example, we apply the result to an example of an ecological model with
the evolution of a quantitative trait as the internal feedback, demonstrating how our
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results apply to models of eco-evolutionary dynamics. Altogether, these applications
highlight how Theorem 1 unifies some existing permanence results and how it enables
us to determine when there is permanence in population models with a variety of
feedbacks.

5.1 Environmental fluctuations

Population dynamics are often influenced by time-varying environmental factors, such
as seasonal fluctuations in temperature and rain fall or other weather patterns. When
environmental factors influence populations’ growth rate, this may affect persistence
of the community. Non-autonomous differential equations, with time-varying param-
eters, are commonly used to account for the temporal changes in growth rates (e.g.
Vance and Coddington 1989; Zhao 2001; Smith and Thieme 2011). These give the
differential equation

dxi
dt

= xi fi (x, t) i = 1 . . . n (6)

where the per-capita growth rates depend on time.
Non-autonomous models can be formulated into our model form (2) when the

environmental factors can be modeled as a solution of an autonomous differential
equation dy

dt = g(y). Then (6) becomes

dxi
dt

= xi fi (x, y) i = 1 . . . n

dy j
dt

= g j (y) j = 1 . . .m
(7)

To apply our main theorem, y must remain in a compact set K ⊂ R
m . Biologically,

there is no mutual feedback between y and x , which is appropriate when y represents
environmental factors, such as weather, that are independent of the population densi-
ties. Model (7) is a special case of a skew product flow, which are commonly used for
studying non-autonomous flows (Zhao 2001; Mierczyński et al. 2004).

To illustrate how our results can be applied to non-autonomous systems, we first
prove a general, algebraically verifiable condition for non-autonomous Lotka–Volterra
systems where only the “intrinsic” per-capita growth rates fluctuate. Indeed, for
these Lotka-Volterra systems permanence conditions are equivalent to an autonomous
Lotka-Volterra systemwith the fluctuating intrinsic rate of growth replaced by an aver-
aged intrinsic rate of growth.When the interaction coefficients fluctuate, however, this
simplification is no longer possible. We illustrate verifying our permanence condition
in this latter case for a Lotka-Volterra system with two competing species.

For the general result, consider a non-autonomous Lotka-Volterra system of the
form

dx

dt
= x ◦ (Ax + b(y))

dy

dt
= g(y)

(8)
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where ◦ denotes component-wise multiplication i.e., the Hadamard product. The
matrix A = (ai j ) corresponds to the matrix of per-capita species interaction strengths
and the vector b(y) corresponds to the intrinsic per-capita growth rates as a function
of the “environmental” state y. As y doesn’t depend on x , we write y.t as the solution
of dy

dt = g(y) with initial condition y ∈ K .
For simplicity, we assume the dynamics of y on K are uniquely ergodic, i.e., there

exists a Borel probability measure μ on K such that

h := lim
t→∞

1

t

∫ t

0
h(y.s)ds =

∫

h(y)μ(dy)

for allμ-integrable functionsh : K → R satisfying
∫ |h(x)|μ(dx) < ∞. In particular,

let b = (b1, . . . , bn) be the temporal averages of the intrinsic rates of growth. Using
these averages, we prove the following two results.

Proposition 1 Assume that (8) satisfies assumption S2 and that the dynamics of y on
K are uniquely ergodic. If there exist p1, . . . , pn > 0 such that

∑

i

pi

⎛

⎝
∑

j

ai j x j + bi

⎞

⎠ > 0 (9)

for any x ∈ R
n+ satisfying

∏
i xi = 0 and

∑
j ai j x j = −bi whenever xi > 0, then (8)

is robustly permanent.

The proof of this proposition is in Appendix 3.

Proposition 2 If there is no x ∈ R
n+ such that

∑
j ai j x j = −bi with xi > 0 for all i ,

then ω(z) ⊂ S0 for all z ∈ S\S0.
Proof Following the proof of Theorem 5.2.1 in Hofbauer and Sigmund (1998), there
exists a p such that

∑
i pi (

∑
j ai j x j + bi ) > 0 for all x ∈ R

n+. Let V (z) =
∑

i pi log(xi ) for all z = (x, y) ∈ S\S0. Then dV
dt = ∑

i pi (
∑

j ai j x j (t) + bi (y.t)).
Now, suppose there is a z ∈ S\S0 with ω(z) ⊂ S\S0. Then, by compactness, there is a
z∗ ∈ ω(z) such that V is maximized on ω(z). Also, since z∗ ∈ S\S0, there is a T > 0
such that 1

T

∫ T
0

d
dt V (z∗.s)dt > 0 but this contradicts the existence of a maximum.

It follows that for all z ∈ S\S0, ω(z) �⊂ S\S0 and ω(z) ∩ S0 �= ∅. Then, by the
Zubov–Ura–Kimura theorem (Garay and Hofbauer 2003), ω(z) ⊂ S0. ��

Hence, when environmental variation drives fluctuations in intrinsic growth rates,
their effects can be averaged in time to determine permanence. On the contrary, we
will show that if interaction coefficients fluctuate, then permanence may hold, even if
predictions from averaging these coefficients in time suggest otherwise.

To demonstrate this explicitly, we consider a modified version of the autonomous
model fromVolterra (1928) of two species competing for a single limiting resource. Let
x1 and x2 be the densities of two species competing for a limited resource, R. Suppose
the death rate and resource use of species i depend on a changing environmental state y
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so that the intrinsic death rate di (y) and the interaction coefficients ai (y) are functions
of y. The model from Volterra (1928) becomes

dx1
dt

= x1(ca1(y)R − d1(y))

dx2
dt

= x2(ca2(y)R − d2(y))

dy

dt
= g(y)

R = max{J − a1(y)x1 − a2(y)x2, 0}

(10)

where c is the efficiencywithwhich both species convert the resource into new individ-
uals and J is the maximum amount of resource available and this is instantly reduced
by the competitors. We assume that the dynamics of y are uniquely ergodic on a com-
pact set K . This model is appropriate for species in which resource use or death rate
change with the seasons or a fluctuating environment.

In the constant environment model (g(y) = 0), Volterra (1928) showed that if
d1(y)
a1(y)

<
d2(y)
a2(y)

< Jc, species 1 will exclude species 2: limt→∞ x2(t) = 0 for any
initial condition z = (x1, x2, y) satisfying x1x2 > 0. This is commonly referred
to in the ecological literature as the R∗ rule (Tilman 1980) and is a mathematical
formulation of the competitive exclusion principle, which asserts that two competing
species for the same resource cannot coexist, if other ecological factors are constant
(Gause 1934; Hardin 1960).

Environmental fluctuations that lead to time-varying parameters might affect the
coexistence of two species competing for the same resource. Proposition 2 implies that
if only the per-capita death rates vary, then the competitive exclusion principle still
holds. However, when the resource use rates vary coexistence is possible. Specifically,
suppose that species i uses the resource at a maximal rate for some compact subset
of environmental states Ki ⊂ K so that ai (y) = 1 and a j (y) = 0 for y ∈ Ki , i �=
j . To allow for temporal partitioning of resource use, we assume that these sets of
environmental states are disjoint i.e. K1 ∩ K2 = ∅. Let ki = limt→∞ 1

t

∫ t
0 1Ki (y.s)ds

be the average time spent in environmental state Ki , where 1Ki : K → R is the
indicator function with 1Ki (y) = 1 for y ∈ Ki and 0 otherwise. Furthermore, assume
that di (y) > ε for some ε > 0 and for all y and i = 1, 2. For example, thismightmodel
the dynamics of winter annual plants in the Sonoran desert that use water following
winter rains, while summer annuals tend to do so during summer (Smith et al. 1997).

Theorem 3 If cJki > di for i = 1, 2, then (10) is robustly permanent.

Proof First, note that (10) satisfies S2 with Q = {[0, cJ 2
ε

]× K }, as dxi
dt < 0 whenever

xi > cJ 2
ε

.

Next, we show that each species persists on its ownwhen the other species is absent.
Consider the single species i model
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dxi
dt

= xi (cai (y)(max{J − ai (y)xi , 0}) − di (y))

dy

dt
= g(y)

(11)

on Si = R+×K with extinction set Si0 = {0}×K .M = {Si0} is aMorse decomposition
for Γi ∩ Si0, where Γi is the global attractor for (11). Then, for all z ∈ Si0,

lim
t→∞

1

t

∫ t

0
fi (0, y.s)ds = lim

t→∞
1

t

∫ t

0
(cai (y.s)J − di (y.s))ds > cJki − d̄i > 0

By Theorem 1, (11) is permanent. Let Ai ⊂ Si\Si0 be the attractor in Γi .
Now, consider (10). Let M3 = {0} × {0} × {K } and Mi = Ai for i = 1, 2. Then,

M = {M3, M2, M1} is a Morse decomposition for S0 ∩ Γ , where Γ is a global
attractor for (10). With p = (1, 1), the inequality in Theorem 1 is satisfied for Morse
set M3. For i = 1, 2,

lim
t→∞

1

t

∫ t

0
fi (z.s)ds = 0

and

lim
t→∞

1

t

∫ t

0
f j (z.s)ds > cJk1 − d1 > 0

for j �= i, for all z ∈ Mi . Then p satisfies the inequality in Theorem 1 for Mi . Finally,
by Theorem 2, (10) is robustly permanent. ��

This result implies that even if species 1 is on average a stronger resource competitor,

i.e., d̄1
cā1

< d̄2
cā2

, it may not always exclude species 2. Temporal differences in resource
use enable weaker competitors to coexist with stronger competitors. The condition in
Theorem3 suggests thatwhenper-capita death rates are high, the species needs a longer
time period to maximally acquire the resource to ensure permanence. Furthermore,
the more resource that is available (greater J ), the shorter this time period can be, all
else being equal. This is an example of the storage effect mechanism of coexistence:
species have different environmental time periods that are good for growth and are able
to survive through time periods bad for growth (Chesson and Warner 1981; Chesson
1994).

5.2 Structured populations

Individual variation that gives rise to intraspecific differences in demographic rates
and species interactions can alter community dynamics and hence, persistence (Moll
and Brown 2008; Bolnick et al. 2011; Fujiwara et al. 2011; van Leeuwen et al. 2014).
One form of structured population models account for this individual variation by
partitioning populations into discrete types, e.g. size classes, spatial location, and
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gender. For example, Hofbauer and Schreiber (2010) consideredmodels of interacting,
structured populations of the form

dui
dt

= Ai (u)ui (12)

where ui = (ui1, . . . , uimi ) is a vector of densities for the mi ≥ 1 subpopulations
of species i , u = (u1, u2, . . . , un) is the state of the entire community, and Ai (u) =
(aijk(u)) j,k are ni × ni matrices with non-negative off-diagonal entries and the sign
structure of an irreducible matrix that only depends on i . First, we show how our result
reproduces a previous result from Hofbauer and Schreiber (2010) for permanence
in structured population models. Second, through a sexually-structured model, we
illustrate how our result applies to models that prior results do not.

5.2.1 Reproduce results from Hofbauer and Schreiber (2010)

Assume that the semi-flow defined by equation (12), with solutions u.t for initial
condition u, has a global attractor Γ . To characterize robust permanence of these
equations, Hofbauer and Schreiber (2010) used dominant Lyapunov exponents that
characterize the long-term growth rates of each of the species. To define the exponents
for species i , consider the linear skew product flow on Γ ×R

mi defined by (u.t, v.t) =
(u.t, Bi (t, u)v) where Y (t) = Bi (t, u) is the solution to Y ′(t) = Ai (u.t)Y (t) with
Y (0) equal to the identity matrix. The assumption that Ai is irreducible with non-
negative off diagonal entries implies that Bi (t, u)R

mi+ ⊂ (0,∞)mi for all u and t > 0
(e.g., Smith 1995). Ruelle (1979, Prop.3.2) provides a non-autonomous form of the
Perron–Frobenius Theorem: there exist continuous maps vi , wi : Γ → R

mi+ with
‖vi (u)‖ = ‖wi (u)‖ = 1, where ‖v‖ = ∑

i |vi |, such that

– The line bundle Ei (u) spanned by vi (u) is invariant, i.e., Ei (u.t) = Bi (u, t)Ei (u)

for all t ≥ 0.
– The vector bundle Fi (u) perpendicular to wi (u) is invariant i.e., Fi (u.t) =

Bi (u, t)Fi (u) for all t ≥ 0.
– There exist constants α > 0 and β > 0 such that

‖Bi (t, u)|Fi (u)‖ ≤ α exp(−βt)‖Bi (t, u)|Ei (u)‖ (13)

for all u ∈ Γ and t ≥ 0.

In light of (13), vi (u) can be viewed as the community state-dependent “stable stage
distribution” of species i for the linearized dynamics given by Y ′(t) = Ai (u.t)Y (t).
Specifically, (13) implies that for any ṽ ∈ (0,∞)mi , Y (t)ṽ/‖Y (t)ṽ‖ − v(u.t) con-
verges to zero as t → ∞. Similarly, wi (u) can be interpreted as the community
state-dependent vector of “reproductive values” for the stages of species i . Stages
with larger entries in wi (u) contribute more to the long-term growth rate of species i .
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Hofbauer and Schreiber (2010) defined the average per-capita growth rate of species
i given the initial community state u as

ri (u) = lim sup
t→∞

1

t

∫ t

0
wi (u.s)T Ai (u.s)vi (u.s) ds

where wT denotes the transpose of a vector w. We derive the following theorem of
Hofbauer and Schreiber (2010) as a corollary of Theorem 1.

Theorem 4 Let {M1, . . . , M�} be a Morse decomposition for S0 ∩ Γ . If for each Mk

there exists pk1, . . . , pkn > 0 such that

∑

i

pki ri (u) > 0 (14)

for all u ∈ Mk, then system (12) is robustly permanent.

Proof To prove Theorem 4 using our framework, we introduce the following change
of variables:

xi =
∑

j

ui j and yi j = ui j/xi .

In this coordinate system, equation (12) becomes

dxi
dt

= xi
∑

j,k

bijk(x, y)yik =: xi fi (x, y) where bijk(x, y) = aijk(u)

dyi j
dt

=
(

∑

k

bijk(x, y)yik − yi j fi (x, y)

)

=: gi j (x, y). (15)

The state space for equation (15) is S̃ = R
n+ ×Δm1 × . . . Δmn where Δk = {y ∈ R

k+ :
∑

j y j = 1} is the k − 1 dimensional simplex. Let Γ̃ ⊂ S̃ and {M̃k}�k=1 be the global

attractor Γ and the Morse decomposition {Mk}�k=1, respectively, for equation (12) in
this coordinate system.

Fix an element M̃k of the Morse decomposition and z = (x, y) ∈ M̃k . Let u be
z in the original coordinate system. Proposition 1 of Hofbauer and Schreiber (2010)
implies that

ri (u) = lim inf
t→∞

1

t

∫ t

0
fi (z.s)ds.

By the assumption of the theorem statement,

∑

i

pi ri (u) > 0.
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Hence, we can choose Tz > 0 such that

∑

i

pi

∫ Tz

0
fi (z.s)ds > 0.

Applying Theorem 1 completes the proof. ��
The change of variables from (12) to (15) demonstrates how structured populations

can be reformulated into our general framework and reproduce results from Hofbauer
and Schreiber (2010).

5.2.2 Sexually structured populations

Our main permanence result applies to structured models that Hofbauer and Schreiber
(2010) does not. In particular, permanence results fromHofbauer and Schreiber (2010)
do not apply to models in which growth depends on the frequency of types in the
populations.

As an example, we consider a rock-paper-scissors three-species competitionmodel,
in which each species is sexually-structured such that reproduction depends on the
frequencies of males and females. Let mi be the density of males and fi the density
of females for species i . Following Caswell and Weeks (1986), we assume that there
is a harmonic mating function in which case the rate at which females and males are
produced (assuming a 50-50 primary sex-ratio) is

b
mi fi
fi + mi

where 2b is the per-capita birth rate of mated females, which is species-independent.
Assume also that mortality is species-independent but sex-specific, with dm and d f as
the per-capita, density-independent mortality rates of males and females, respectively.
To account for intra- and inter-specific density-dependent feedbacks due to compe-
tition, let ai j be the strength of the competitive effect of species j on species i . For
simplicity, we assume these density-dependent effects are not sex-specific. However,
the model can be easily modified to account for these sex-specific feedbacks. Under
these assumptions, the model is

d fi
dt

= fi

⎛

⎝b
mi

fi + mi
− d f −

∑

j

ai j (m j + f j )

⎞

⎠

dmi

dt
= mi

⎛

⎝b
fi

fi + mi
− dm −

∑

j

ai j (m j + f j )

⎞

⎠

i = 1, 2, 3 (16)
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To ensure each species can persist in the absence of the others, we assume that
b > dm + d f . To account for rock-paper-scissors competitive dynamics, we assume
the interaction terms ai j are given by

A = a +
⎛

⎝
0 β −α

−α 0 β

β −α 0

⎞

⎠

where a, α, β are all positive and α < a.
Due to the frequency dependent terms, this model does not satisfy the continuity

assumptions of Hofbauer and Schreiber (2010) and, consequently, their results can
not be applied directly to study permanence of these equations. However, through the
change of variables,

xi = mi + fi and yi = fi
xi

Equation (16) transforms to

dxi
dt

= xi

⎛

⎝2byi (1 − yi ) − d f yi − dm(1 − yi ) −
∑

j

ai j x j

⎞

⎠

dyi
dt

= yi (1 − yi )(b + dm − d f − 2byi )

i = 1, 2, 3 (17)

and our permanence theorem applies to prove

Theorem 5 Under these assumptions, if α > β, then (17) is permanent in R
3+ ×

(0, 1)3. Conversely, if α < β, then (17) is not permanent.

Proof First, note that (17) satisfies the assumptions of our main theorem (1). The
dynamics on the extinction set consist of an unstable equilibriumat (x, y) = (0, 0, 0)×
(ŷ1, ŷ2, ŷ3) and a heteroclinic cycle between single species equilibria (e.g. (x̂1, 0, 0)×
(ŷ1, ŷ2, ŷ3)) where

x̂i = b − dm − d f

a
, ŷi = 1

2
+ dm − d f

2b
and x j = y j = 0 for j �= i.

At these equilibria, the per-capita growth rates of the missing species are α x̂i and
−β x̂i . Using the Morse decomposition consisting of the zero equilibrium and the
heteroclinic cycle, Theorem 1 implies that permanence occurs if there exist pi > 0
such that

p1 · 0 + p2 · α x̂1 + p2 · (−β x̂1) > 0

p1 · (−β x̂2) + p2 · 0 + p2 · α x̂2 > 0

p1 · α x̂3 + p2 · (−β x̂3) + p2 · 0 > 0.

123



www.manaraa.com

94 S. Patel, S. J. Schreiber

As x̂1 = x̂2 = x̂3, there is a solution to these linear inequalities if and only if α > β.
Conversely, there is a solution to the reversed linear inequalities if and only if β > α

and then Theorem 1 implies that (17) is not permanent. ��

Theorem 5 yields the same permanence condition as in the classic asexual model.
Due to our assumption that density-dependent feedbacks are not sex-specific, the
system is only partially coupled as the frequency dynamics of y do not depend on
x . With sex-specific density-dependent feedbacks, the system would be fully coupled
but still analytically tractable as these feedbacks would appear as linear functions of
xi in the yi equations.

5.3 Quantitative genetics

In recent years, empirical studies have demonstrated that feedbacks between evolu-
tionary and ecological processes (eco-evolutionary feedbacks) can affect coexistence
of species (Lankau and Strauss 2007). As a consequence of the growing empirical
evidence, theoreticians have developed models that couple commonly used ecologi-
cal models with evolutionary equations to study eco-evolutionary feedbacks. For the
evolution of quantitative traits, such as body size, a common approach is to assume
that the rate of trait change is proportional to the gradient of per-capita growth with
respect to the trait (Lande 1976). This has led to models of the form

dxi
dt

= xi fi (x, y) i = 1 . . . n

dy

dt
= σ 2

G
∂ f j
∂y

(18)

where y represents the mean of an evolving quantitative trait of one of the species
j , and σ 2

G is the heritable variance of the trait (Lande 1976). These feedbacks are
immediately in the form of (2) and we can use Theorem 1 to identify when eco-
evolutionary feedbacks mediate coexistence.

For illustrative purposes,we consider amodel developed bySchreiber et al. (2011b).
They consider the apparent competition communitymodule, inwhich two prey species
with densities x1, x2, respectively, share a common predator with density x3. In this
model, the predator population has a quantitative trait that determines the attack rate
of individual predators on each prey species. The quantitative trait is assumed to be
normally distributedwith varianceσ in the predator populationwithmean y ∈ [θ1, θ2],
where θi is the optimal trait for attacking prey i . They derived a function ai (y) of the
average attack rate of the predator on prey i that decreases with the distance between
the trait y and θi , given by

ai (y) = αiτ√
σ 2 + τ 2

exp
[
− (y − θi )

2

2(σ 2 + τ 2)

]
.
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where αi is the maximum attack rate on prey i and τ > 0 determines how specialized
the predator must be to attack each prey. The coupled dynamics are

dxi
dt

= xi (ri (1 − xi/Ki ) − x3ai (y)) i = 1, 2

dx3
dt

= x3 f3(x, y)

dy

dt
= σ 2

G
∂ f3
∂y

(19)

where Ki > 0 and ri > 0 are the carrying capacity and intrinsic growth, respectively,
for prey i . f3 is the average per-capita growth rate or fitness of the evolving species
given by,

f3(x, y) =
2∑

i=1

eiai (y)xi − d

where ei > 0 is the efficiency at which the predator converts prey i into new predators
and d > 0 is the intrinsic death rate of the predator.

We can apply Theorem 1 to characterize permanence of this system.

Theorem 6 Let W = {y ∈ [θ1, θ2]| ∂ f3
∂y (K1, K2, y) = 0} be the set of equilibria for

the trait dynamics when the prey are at carrying capacity and the predator density is
zero. If

1. ri
ai (θ j )

>
r j

a j (θ j )
(1 − d

a j (θ j )e j K j
) for i = 1, 2; i �= j and

2. e1a1(y∗)K1 + e2a2(y∗)K2 > d for all y∗ ∈ W

then the system is robustly permanent in R
3+ × [θ1, θ2]. Conversely, if any inequality

is reversed, then the system is not permanent.

The first condition ensures that prey species i has positive per-capita growth when
the predator has evolved to optimize on prey j �= i (y = θ j ) and the predator and prey
j are at their unique equilibrium densities. The second condition ensures that when the
predator is rare and both prey are at carrying capacity, the predator has positive growth
when it evolves to one of its trait equilibria. Using a different approach, Schreiber and
Patel (2015) show (19) is permanent under these conditions. Our results strengthen
their results by showing robust permanence.

Proof Equation (19) satisfies the assumptions of Theorem 1. In particular, there is
a global attractor Γ . Let M6 = {(0, 0, 0)} × [θ1, θ2], M5 = {(K1, 0, 0, θ1)}, M4 =
{(0, K2, 0, θ2)}, M3 = {(x̂1, 0, x̂ (1)

3 , θ1)}, and M2 = {(0, x̂2, x̂ (2)
3 , θ2)} where x̂i =

d
ei ai (θi )

and x̂ (i)
3 = ri (1− x̂i

Ki
)

ai (θi )
. Finally, let M1 = {(K1, K2, 0)} × [y1, y2] where y1 =

miny∈W y and y2 = maxy∈W y. Schreiber and Patel (2015) consider three separate
cases: (i) d ≥ a1(θ1)e1K1, (ii) a1(θ1)e1K1 > d ≥ a2(θ2)e2K2 or (iii) a2(θ2)e2K2 >

d. They show that M1 = {M1, M4, M5, M6}, M2 = {M1, M3, M4, M5, M6} and
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M3 = {M1, M2, M3, M4, M5, M6} form a Morse decomposition for (19) under case
(i), (ii), and (iii) restricted to Γ ∩ S0, respectively.

Consider case (iii). For each Morse set Mk ∈ M3, there exist a vector pk that
satisfies the inequality in Theorem 1 for every point in the set. For example, for ε

sufficiently small, p6 = (1, 1, ε) satisfies the inequality in Theorem 1 for M6. Case
(ii) and case (i) follow similarly. ��

6 Discussion

Understanding how abiotic and biotic factors determine coexistence of interacting
species is a fundamental problem in ecology. Ecologists have demonstrated that factors
internal to the populations, such as individual variation (Bolnick et al. 2011;Violle et al.
2012;Hart et al. 2016;Barabás andD’Andrea 2016) and evolution (Lankau andStrauss
2007; Barabás and D’Andrea 2016), and factors external to the populations, such as
temporal variation in abiotic factors (Hutchinson 1961), can have substantial impacts
on population dynamics. Moreover, as these internal and external factors change, their
influence on population growth leads to changes in population densities which in turn
may alter these factors, thereby creating a feedback loop. The instrumental role of
this feedback on coexistence has been demonstrated both empirically (e.g. Lankau
and Strauss 2007; Chung and Rudgers 2016) as well as theoretically (e.g. Bever et al.
1997; Revilla et al. 2013). Our work develops the mathematical framework for finding
conditions that enable coexistence in community dynamicmodels with feedbacks and,
by applying this theory, elucidates the role of these internal and external feedbacks on
coexistence.

We find that if there is a weighting of the species such that the temporal average of
the weighted per-capita growth rates is positive whenever a species is missing, then
populations coexist with feedbacks. Moreover, given a Morse decomposition for the
extinction set, these weightings can differ among the components of this decomposi-
tion. For models without feedbacks, this sufficient condition for robust permanence is
equivalent to the condition found by Garay and Hofbauer (2003). Hence, our results
provide a natural extension to models with internal and external feedbacks. As our
examples illustrate, these feedbacks play two critical roles for coexistence. First, the
effect of the feedback variable will influence the Morse decomposition for the extinc-
tion set. Second, feedbacks affect the per-capita growth of each of the species and
thereby, influence whether the weighted combination of these growth rates can be
positive. These differences can drive feedbacks to enable or prevent coexistence.

In addition to extending the work of Garay and Hofbauer (2003) to include internal
and external feedbacks, our general framework and permanence result incorporates
existing population models with specific types of internal feedbacks (Caswell and
Weeks 1986; Caswell 2001; Hofbauer and Schreiber 2010), external feedbacks (Arm-
strong and McGehee 1976; Mottoni and Schiaffino 1981; Zhao 2001), and mixtures
of internal and external feedbacks (Hastings et al. 2007; Cuddington et al. 2009).
Through our examples, we illustrate how to transform several of these earlier results
into our framework. In our first example, we formulate a non-autonomous model
with parameters that vary with the environment into our framework by introducing
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a feedback variable that models the dynamics of the environmental variation. In the
second example, we transform a structured population model, in which populations
are partitioned into distinct types, into our framework, via a change of variables into
frequencies of types and total densities. The frequencies of the different types within
the population act as the internal feedback variables. Finally, in the third example,
we demonstrate how our results apply to population models with feedbacks due to
trait evolution. These examples highlight that our framework can help elucidate how
populations coexist in a range of ecological scenarios.

In an attempt to explain empirical evidence for coexistence that was incompat-
ible with theoretical predictions, Hutchinson (1961) postulates that changes in the
environment that alter the competitive superiority of one species over another can
enable coexistence. Our first example highlights that ergodic environmental varia-
tion that drives temporal differences in ecological parameters can enable coexistence
of populations in a community, but that this depends on the role it has on influ-
encing population growth. In particular, we show that environmental variation that
influences species interactions enables coexistence, in comparison to an analogous
model that uses time-averaged parameters instead of explicitly accounting for varia-
tion. Our results are an extension of previous work that showed coexistence amongst
two competing species with periodic environmental variation (Armstrong and McGe-
hee 1976; Cushing 1980; Mottoni and Schiaffino 1981) and a specification of the
general results for non-autonomous two species models (Zhao 2001). Notably, our
example demonstrates how variation and separation of resource use between two
species can enable coexistence through a storage effect (Chesson and Warner 1981),
provided that species are “stored” through periods they do not use the resource and
can sufficiently recover through periods in which they do. Interestingly, our results
also highlight that environmental variation that only influences non-interaction terms,
such as per-capita mortality, does not enable coexistence due to the linearity of non-
interaction terms in the model. The necessity for temporal variation to act in nonlinear
ways to enable coexistence was also noted for models with stochastic environments
(Schreiber 2010) as well as in discrete time models with non-overlapping generations
(Chesson and Warner 1981; Chesson 1994).

In addition to externally-driven temporal variation, internal variation within popu-
lations may also impact coexistence. Many reviews highlight that models with internal
variation can lead to different predictions and inferences in both empirical and theoret-
ical ecological studies compared tomean fieldmodels (Bolnick et al. 2011; Violle et al.
2012; Hart et al. 2016). Structured population models, a commonly used framework
for accounting for internal variation, involve partitioning the population into distinct
types, such as based on sex, life stages, or location in space, so that each type has
its own growth rate depending on all other types (Caswell and Weeks 1986; Caswell
2001). Our permanence condition can be used to determine when structured interact-
ing populations coexist. These results apply to structured models that previous results
from Hofbauer and Schreiber (2010) do not. Mainly, Hofbauer and Schreiber (2010)
made two mathematical assumptions. First, they assume that there were no negative
interactions between individuals of different types. This assumption may not hold
in a number of common ecological scenarios, including models with cannibalism or
other forms of interference, which is a prevalent negative interaction between different
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life stages within a population (Fox 1975; Polis 1981). Second, they assume conti-
nuity in the growth matrices Ai , which restricts their framework to models with no
frequency dependent growth. Growth in structured models may be frequency depen-
dent in a number of biological scenarios. In our example, we apply our results to a
sexually-structuredmodel,which, followingCaswell andWeeks (1986), has frequency
dependence since fecundity depends on sex ratios. In particular, through a change of
variable from the densities of different types within a species to total density and fre-
quency of types, structured models can be reformulated into our framework, making
the permanence conditions applicable to a broad range of structured models.

When individual variation in a population is heritable, this sets the stage for evo-
lution to take place in response to differential selection pressures (Violle et al. 2012).
Recent empirical evidence has demonstrated the prevalence of feedbacks between
population dynamics and trait evolution (called eco-evolutionary feedbacks; reviewed
in Schoener 2011; Lankau and Strauss 2011 and that these feedbacks may impact
population dynamics (Abrams 2000; Lankau 2009; Cortez and Ellner 2010; Vasseur
et al. 2011; Schreiber et al. 2011b; Northfield and Ives 2013; Patel and Schreiber
2015). Thus far, few studies have shown permanence in these types of models (but see
(Schreiber et al. 2011b; Schreiber and Patel 2015)), and we hope that these results will
motivate analyses of coexistence in the sense of permanence in future eco-evolutionary
studies. Through our example, we demonstrate how these results can elucidate the con-
ditions for robust permanence in a model where a predator is evolving between traits
that are more fit for attacking one prey species versus another. In the absence of eco-
evolutionary feedbacks, the prey species exhibit apparent competition: increasing the
density of one prey increases the predator density and, thereby, results in a reduction
of the other prey species (Holt 1977). For highly enriched environments in which the
carrying capacities of the prey are large, this apparent competition can lead to exclu-
sion of one of the prey species (Holt and Lawton 1994). As the predator evolves to
specialize on the more common prey, eco-evolutionary feedbacks can rescue the rare
prey from this outcome and enable coexistence. Applying our results to other eco-
evolutionary models may provide opportunities to gain a more general understanding
of the role of evolution on species coexistence.

Our results here extend existingmethods for permanence to account for internal and
external feedbacks, generalizing some existing results and broadening their applicabil-
ity. There are a number of natural avenues that would be useful to develop in the future,
including infinite dimensional models and stochastic models. We assume feedbacks
are contained inR

m+. However, some internal and external feedbacksmay be better cap-
tured in infinite dimensions and extending our results to account for this may be useful
(e.g. integral projection models; Easterling et al. 2000). Permanence has been studied
in general infinite dimensional dynamical systems (Hale and Waltman 1989; Smith
and Thieme 2011) as well as in models with specific types of feedbacks, including
those captured through continuous spatial heterogeneity (Dunbar et al. 1986; Cantrell
et al. 1993, 1996; Zhao and Hutson 1994; Furter and López-Gómez 1997; Cantrell
and Cosner 2003; Zhao 2003; Mierczyński et al. 2004; Smith and Thieme 2011),
age structure (Smith and Thieme 2011) and time delays (Burton and Hutson 1989;
Freedman and Ruan 1995; Ruan and Zhao 1999; Zhao 2003). Whether transforming
these models into a framework analogous to the one here is useful requires further
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exploration. Furthermore, populations may feedback with random internal or external
factors. Extending permanence results for stochastic population models to account for
feedbacks will enable comparisons to our framework to understand broadly the role
of random feedbacks on coexistence. With the growing number of empirical studies
investigating internal and external factors that influence population dynamics, eco-
logical models are becoming more sophisticated. In order for permanence to remain
an important concept in ecology, the methods for demonstrating permanence must
continue to expand to these new modeling frameworks.
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Appendix 1: Proof of Theorem 1

To prove Theorem 1, we begin by introducing “good average Lyapunov functions”
and proving a more general theorem.

Definition A1 A continuous map P : U → R, whereU ⊂ S is an open set, is a good
average Lyapunov function (GALF) for (2) if

– P(z) = 0 for all z ∈ S0 ∩U and P(z) > 0 for all z ∈ (S\S0) ∩U ,
– P is differentiable on (S\S0) ∩U ,
– ∂P

∂y j
= 0 for all j ,

– pi := xi
P

∂P
∂xi

, which are continuous functions defined on (S\S0) ∩ U and extend
continuously to S ∩U , and

– for every z ∈ S0 ∩U , there is a Tz > 0 such that z.t ∈ U for t ∈ [0, Tz], and
∫ Tz

0

∑

i

pi (z.t) fi (z.t)dt > 0.

We prove the following theorem

Theorem A1 Let M = {M1, M2, . . . M�} be a Morse decomposition for S0 ∩ Γ of
(2). For each k, let Uk be an open neighborhood of Mk and let Pk : Uk → R be a
good average Lyapunov function for (2). Then (2) is permanent.

Proof Fix k. Let F(z, T ) := ∫ T
0

∑
i pi (z.t) fi (z.t)dt for all z ∈ Uk and T ≥ 0, where

pi is defined from the definition of a GALF.
By definition of the GALF, for all z ∈ Mk , there is a Tz > 0 and δ(z) > 0 such that

F(z, Tz) > δ(z)
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By continuity of F , there is a neighborhood Vz ⊂ Uk of z ∈ Mk such that
F(v, Tz) >

δ(z)
2 for all v ∈ Vz . The collection of sets {Vz}z∈Mk forms an open cover

of Mk . By compactness, there is a finite subcover {Vz j }�j=1. Let Vk = ∪�
j=1Vz j , c =

1
2 min{δ(z j )}�j=1 and T = max{Tj }�j=1, where Tj := Tz j .

Then, Vk ⊂ Uk is a neighborhood of Mk such that for all z ∈ Vk there is a
0 < Tj < T satisfying

F(z, Tj ) > c.

Furthermore, for z ∈ (S\S0) ∩ Vk ,

ln(P(z.Tj )) − ln(P(z)) =
∫ Tj

0

1

P(z.s)

d

ds
P(z.s)ds

=
∫ Tj

0

1

P(z.s)

(
n∑

i=1

∂P

∂xi

dxi
ds

+
m∑

i=1

∂P

∂yi

dyi
ds

)

ds

=
∫ Tj

0

n∑

i=1

pi (z.s) fi (z.s)ds > c,

which gives
P(z(Tj )) > (1 + c)P(z). (A1)

By the Corollary to Theorem 2 fromGaray (1989), permanence follows from show-
ing that each Mk is isolated and that (S\S0) ∩ Ws(Mk) = ∅, where Ws(Mk) = {z ∈
S|∅ �= ω(z) ⊂ Mk}. For any initial condition z, let γ +(z) = z.[0,∞) be the forward
trajectory of z. Assume there is a z ∈ (S\S0)∩Vk such that γ +(z) ⊆ Vk . Then, there is
a z∗ ∈ γ +(z)∩Vk such that P(z∗) = max

v∈γ +(z)∩Vk P(v). Then, either (i) there exists
a t∗ > 0 such that z∗ = z.t∗ or (ii) there exists tn → ∞ such that zn := z.tn converges
to z∗ as n → ∞. If (i), then equation (A1) implies P(z∗.Tz∗) > (1 + c)P(z∗) for
some Tz∗ > 0, which is a contradiction to the choice of z∗ since z∗.Tz∗ ∈ γ +(v). If
(ii), then for some sequence Tzn > 0, P(zn .Tzn ) > (1 + c)P(zn) → (1 + c)P(z∗),
which is a contradiction to the choice of z∗ since zn .Tzn ∈ γ +(z) for all n.

Hence, for all v ∈ (S\S0) ∩ Vk , γ +(v)\Vk �= ∅. It follows that Mk is isolated and
for all v ∈ (S\S0) ∩ Vk , ω(v) �⊂ Mk . The latter gives that (S\S0) ∩ Ws(Mk) = ∅. ��

Theorem 1 immediately follows when using the standard form (4) as a GALF on
each Morse set. It is easy to see that when pki > 0 for all i, k, (4) satisfies the first
four properties of a GALF. In particular, the fourth and fifth property follow since
xi
P

∂P
∂xi

= pki and hence is constant in U .

Appendix 2: Proof of Theorem 2

To show robust permanence, we will use the following theorem from Hirsch et al.
(2001) [Corollary 4.5]. Note that this corollary is for maps, but an analogous proof for
flows holds (see Hirsch et al. 2001 [Remark 4.6]).
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Theorem A2 Let (S, d) and (Λ, ρ) be metric spaces. For each λ ∈ Λ, let φλ :
S × R → S be a flow that is continuous in λ, z, t . Let Sp ⊂ S be an open subset such
that Sp is invariant for all λ and let ∂S = S\Sp. Also, assume that every forward
trajectory for φλ has compact closure in S and that

⋃
λ∈Λ,z∈S ωλ(z) has compact

closure, where ωλ denotes the ω-limit for φλ. Let λ0 ∈ Λ be fixed and assume that

T1: φλ0 hasaglobal attractorΓ and there exists aMorsedecomposition {M1, . . . , M�}
for Γ ∩ ∂S

T2: there exists δ0 > 0 such that for any λ ∈ Λ with ρ(λ, λ0) < δ0 and any z ∈ Sp,
lim supt→∞ d(φλ(z, t), Mk) ≥ δ0, for all 1 ≤ k ≤ �.

Then, there exists a β > 0 and δ > 0 such that lim inf t→∞ d(φλ(z, t), ∂S) ≥ β

for any λ ∈ Λ with ρ(λ, λ0) < δ and any z ∈ Sp.

To apply this theorem, endow Λ = Δ(1, Q) with the sup norm (i.e. ρ(h1, h2) =
‖(h1, h2)‖∞ = supz∈Q ‖h1(z), h2(z)‖). Let S = R

n+m with the standard metric and
let Sp = S\S0. By R3 in the definition of perturbations, ⋃( f̃ ,̃g)∈Δ(1,Q),z∈S ω̃(z) ⊂ Q
and so has compact closure. For ( f, g), we have a Morse decomposition for Γ ∩ S0.

Hence, we only have to show T2. To do this, we show that there exists a 1 > δ > 0
sufficiently small such that if Pk is a GALF onUk for (2), then it is also a GALF on Vk
for every ( f̃ , g̃) ∈ Δ(δ, Q), where Vk is defined in the proof of Theorem 1. First, note
that the first four conditions defining a GALF are properties of P and independent of
the flow. Hence, these are still satisfied. We must show the final condition: for a δ > 0
sufficiently small, for all z ∈ Vk ∩ S0, there is a Tz > 0 such that

∫ Tz

0

n∑

i=1

pi (z̃.t) f̃i (z̃.t)dt > 0 (A2)

for every ( f̃ , g̃) ∈ Δ(δ, Q).
Let F(z, T ) := ∫ T

0

∑
i pi (z.t) fi (z.t)dt and F̃(z, T ) := ∫ T

0

∑
i pi (z̃.t) f̃i (z̃.t)dt .

Let T, c be such that for all z ∈ Vk , there is a 0 < Tz < T for which F(z, Tz) > c, as
in the proof of Theorem 1. Then, for sufficiently small δ > 0,

|F̃(z, Tz) − F(z, Tz)| ≤
∫ Tz

0

n∑

1

|pi (z̃.t) f̃i (z̃.t) − pi (z̃.t) fi (z̃.t)|

+ |pi (z̃.t) fi (z̃.t) − pi (z.t) fi (z.t)|dt
<

c

2

for every ( f̃ , g̃) ∈ Δ(δ, Q) and all Tz ∈ [0, T ]. The first inequality follows from the
triangle inequality. The second inequality follows from R1 in the definition of per-
turbations, which constrains the first difference in the sum, and Gronwall’s inequality
and Lipschitz continuity of xi fi and gi , which constrain the second difference in the
sum.
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Finally, for all z ∈ S0 ∩ Vk , there is a 0 < Tz < T such that

F̃(z, Tz) ≥ −|F̃(z, Tz) − F(z, Tz)| + F(z, Tz) ≥ − c

2
+ c = c

2
> 0

Hence, for sufficiently small δ > 0, Pk is a GALF on isolating neighborhood Vk
for every ( f̃ , g̃) ∈ Δ(δ, Q). By the same argument as in the proof of Theorem 1, this
implies that for all z ∈ Sp ∩ Vk , γ +(z) � Vk , which implies T2. Finally, by Theorem
A2, every ( f̃ , g̃) ∈ Δ(δ, Q) is permanent and there is a uniform lower bound β > 0
in the definition of permanence for all ( f̃ , g̃).

Appendix 3: Proof of Proposition 1

Proof Choose the trivial Morse decomposition M := {Γ ∩ S0}. We want to show
that for all z ∈ M , there is a Tz such that F(z, Tz) > 0, where F(z, T ) :=
∫ T
0

∑
i pi fi (z.t)dt , with fi (z.t) = ∑

i ai j x j + bi . The proof follows the proof
of Theorem 13.6.1 in Hofbauer and Sigmund (1998). For any I ⊆ {1, . . . n}, let
σI := {(x, y)|xi > 0 ⇐⇒ i ∈ I } and let �(σI ) be the cardinality of I . The σI are
invariant. The proof is by induction. First, assume z ∈ σI with �(σI ) = 0, so that
z = (0, y). Then, by inequality (9),

∑
i pi b̄i > 0. Hence, there is a Tz such that

F(z, Tz) > 0.
Now, assume that for all z ∈ σI such that �(σI ) ≤ k − 1, there is a Tz such that

F(z, Tz) > 0. Let z be a point in σJ with �(σJ ) = k. There are two possible cases.
In case 1, ω(z) ⊂ ⋃

�(σI )≤k−1 σI ∩ M . As in the proof of Theorem A1, there is a
neighborhood V of

⋃
�(σI )≤k−1 σI ∩ M , a T > 0 and a c > 0, such that for all z ∈ V ,

there is a Tz < T such that F(z, Tz) > c. Since ω(z) ⊂ ⋃
�(σI )≤k−1 σI ∩ M , there is

a T̃ > 0 such that z.t ∈ V for all t > T̃ . Hence, there is a Tz such that F(z, Tz) > 0
In case 2, ω(z) �⊂ ⋃

�(σI )≤k−1 σI ∩ M . Then, there exists an ε and an increasing
sequence Tm → ∞ such that xi (Tm) > ε for all i ∈ J and all Tm . Furthermore, by
passing to a subsequence if necessary, 1

Tm

∫ Tm
0 xi (t)dt converges to some x̄i for all i ,

as m → ∞. For i /∈ J , x̄i = 0. By the unique ergodicity of y, 1
Tm

∫ Tm
0 bi (y(t))dt

converges to b̄i as m → ∞.
For i ∈ J , 1

Tm
[log xi (Tm) − log xi (0)] = 1

Tm

∫ Tm
0

∑
j ai j x j (t) + bi (y(t))dt . Since

xi (Tm) > ε, the left hand side goes to zero as m → ∞. So for all i ∈ J ,
∑

j ai j
1
Tm

∫ Tm
0 x j (t)dt + 1

Tm

∫ Tm
0 bi (y(t))dt → 0 as m → ∞, which implies that

∑
j ai j x̄ j = −b̄i . Finally, by inequality (9), there exists a Tz > 0 such that

1
Tz

∫ Tz
0

∑
pi

∑
j ai j x j (t)+bi (y(t))dt > 0.ApplyingTheorem2 concludes that proof.

��
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